0=-16t^2+94

Simple and best practice solution for 0=-16t^2+94 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t^2+94 equation:



0=-16t^2+94
We move all terms to the left:
0-(-16t^2+94)=0
We add all the numbers together, and all the variables
-(-16t^2+94)=0
We get rid of parentheses
16t^2-94=0
a = 16; b = 0; c = -94;
Δ = b2-4ac
Δ = 02-4·16·(-94)
Δ = 6016
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6016}=\sqrt{64*94}=\sqrt{64}*\sqrt{94}=8\sqrt{94}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{94}}{2*16}=\frac{0-8\sqrt{94}}{32} =-\frac{8\sqrt{94}}{32} =-\frac{\sqrt{94}}{4} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{94}}{2*16}=\frac{0+8\sqrt{94}}{32} =\frac{8\sqrt{94}}{32} =\frac{\sqrt{94}}{4} $

See similar equations:

| 7(x+2)=3x+10 | | 9x+2=-x-18 | | 4x-1+2x=10x-9 | | 47=-16t^2+94 | | 6y-41-10=180 | | (4)=3x-7 | | -3/x=-6/3x+7 | | (9)=2x-3 | | 9+2(2x-1)=1 | | 3(x-12=27 | | 3y+4-6y=19 | | -25+12h=10h-19 | | -7+2x+1=8x-14+6 | | 8x+3=8x* | | 0=64-3x-5x^2 | | 5(z-9)=17 | | 4-3i=10 | | x+21+2x=123 | | 2i+3=-9 | | 9x-4+40=180 | | (10-4x)=2 | | 9-4w=-13 | | 5y+2+2y=30 | | 5-8a=3 | | 9d-16-6d=2(7d+9) | | 13w+12=5 | | 3(2x-8)-6x=20 | | 1.2r-7=2.3r=3.5(r-2) | | 0.5(4-8x)=-(8x+2) | | x+118+x+68=180 | | -9x+1=-75+x/2 | | x+118=x+68 |

Equations solver categories